Crowdsourced Electricity Demand Forecast
ثبت نشده
چکیده
We propose a new approach to forecasting the demand for a commodity in which the commodity supplier asks each consumer to forecast its own demand for the commodity and in return gives a monetary reward that is proportional to the accuracy of the forecast. Such an approach might be applicable when consumer demand for a perishable commodity is uncertain and forecast error leads to waste for producers or suppliers. We apply this approach to the forecasting of residential electricity demand over 24 hours, i.e., short-term load forecasting (STLF). Accurate STLF is vital to meeting the large daily fluctuations in the demand for electricity in a reliable and economical way. Improved STLF accuracy might reduce the variable costs incurred by power system operators and energy retailers through more precise generation scheduling and energy purchasing. We propose a new method to model both the true demand profiles for individual residential electricity consumers, and the consumer forecasts of those demand profiles. We study the error associated with the resulting forecast of aggregate demand as a function of the model parameters.
منابع مشابه
Iran's Electrical Energy Demand Forecasting Using Meta-Heuristic Algorithms
This study aims to forecast Iran's electricity demand by using meta-heuristic algorithms, and based on economic and social indexes. To approach the goal, two strategies are considered. In the first strategy, genetic algorithm (GA), particle swarm optimization (PSO), and imperialist competitive algorithm (ICA) are used to determine equations of electricity demand based on economic and social ind...
متن کاملUsing Weather Ensemble Predictions in Electricity Demand Forecasting
Weather forecasts are an important input to many electricity demand forecasting models. This study investigates the use of weather ensemble predictions in electricity demand forecasting for lead times from one to 10 days ahead. A weather ensemble prediction consists of 51 scenarios for a weather variable. We use these scenarios to produce 51 scenarios for the weather-related component of electr...
متن کاملStrategic Bidding in a Pool-Based Electricity Market under Load Forecast Uncertainty
This paper proposes a method for determining the price bidding strategies of market participants consisting of Generation Companies (GENCOs) and Distribution Companies (DISCOs) in a day-ahead electricity market, while taking into consideration the load forecast uncertainty and demand response programs. The proposed algorithm tries to find a Pareto optimal point for a risk neutral participan...
متن کاملChallenges in forecasting peak electricity demand
We want to forecast the peak electricity demand in a half-hour period in twenty years time. We have fifteen years of half-hourly electricity data, temperature data and some economic and demographic data. The location is South Australia: home to the most volatile electricity demand in the world.
متن کاملپیش بینی تقاضای بلندمدت انرژی الکتریکی با استفاده از الگوریتم ترکیبیِ عصبی- فازی و انبوه ذرات
Storing the electrical energy in large scale is impossible. So, it is necessary to identify the factors affecting the electricity demand. Researchers have used different methods to forecast the future demand of electricity, among them intelligent methods and fuzzy based methods are more popular. Since ANFIS structure is based on researcher’s experience about phenomenon, the created structure ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014